@matimatik Да, что-то подобное мы решали еще в школе. Помнил бы я еще как, но интуиция и подстановка подсказывает о 3^n-2^n. Там было что-то с квадратным уравнением.
@matimatik Это и есть определение производной в точке. И в нуле там получается 0/0, а не ноль и не бесконечность. Потому исходная функция, хоть и непрерывна в нуле, но не дифференцируема.
@matimatik Так вроде разрыва-то нет? Производная же и сверху, и снизу стремится к нулю там. Я думал, её там просто нет, но если есть, то не вижу, в чём проблема.
@matimatik Насколько я правильно помню определения, гладкая функция должна иметь непрерывную производную любого порядка. Тут такого нет, что уже по графику в принципе видно.
@matimatik >In mathematical analysis, a differentiability class is a classification of functions according to the properties of their derivatives. Higher order differentiability classes correspond to the existence of more derivatives. Functions that have derivatives of all orders are called smooth.
Хотя по-русски могут быть другие определения, конечно. Я на русском математику почти и не изучал.