Два года в /fg/. Войти !bnw Сегодня Клубы
УНЯНЯ. У нас есть немножечко инфы об этом пользователе. Мы знаем, что он понаписал, порекомендовал и даже и то и другое сразу. А ещё у нас есть RSS.
Теги: Клубы:

Науки о мозге несут тяжёлое наследство психиатрии и ранних методов, где основной способ изучения мозга - "сломать и посмотреть что изменилось", т.е. это в основном изучение различных болезней и поломок мозга. Это абсолютно не инженерный подход к проблеме, он не ставят своей целью воссоздание принципов мозга с такой детализацией чтобы их было можно реализовать в машинах.
Однако в последние лет 20 активно развивается вычислительная нейронаука, которая пытается моделировать микроцепи мозга с разной степенью детализации и даже ставить вычислительные эксперименты с подключением этих микроцепей к симулятору среды (правда гораздо реже чем хотелось бы, чаще всего нейросеть работает без взаимодействия с какой-либо средой, со случайными стимулами - может быть потому что для публикации этого достаточно).
Уже сейчас есть большое количество моделей нейронов и синапсов представляющих собой разнообразные системы дифференциальных уравнений которые при правильном выборе параметров довольно точно описывают динамику нейронов.
Самые сложные модели такого рода создаёт и использует Генри Маркрам из проекта Blue Brain (а теперь уже Human Brain Project): многокомпартментальные варианты модели Ходжкина-Хаксли (Самой модели Ходжкина-Хаксли уже более 40 лет), с биологически реалистичными моделями популяций ионных каналов. Одной модели нейрона недостаточно, необходимы биологически реалистичные модели синаптической пластичности (для разных временных масштабов разные модели), особенно для STDP которую собственно открыл Маркрам вместе с другими учёными в 1993 году. Модели синапсов точно не проще чем модели динамики нейронов, и это важно, так как по современным представлениям именно пластичность синапсов лежит в основе феномена памяти.
Подход Маркрама, максимально биологически-реалистичная симуляция имеет свои сильные стороны, но он не единственный. Есть целый спектр моделей нейронов и систем нейронов с разными областями применения, из которых особенно хотелось бы выделить модель Ижикевича (вместе с STDP она позволяет получать интересные экспериментальные результаты, про них можно почитать ниже, где о Эдельмане), абстрактные модели на байесовских сетях и "иерархическую темпоральную память" Хокинса.

Из интересных работ на упомянутые выше темы могу вспомнить
Обзор больших симуляций:
http://www.sciencedirect.com/science/article/pii/S0925231210003279
Симуляции:
http://www.pnas.org/content/105/9/3593.full
http://www.ncbi.nlm.nih.gov/pubmed/17822776
http://www.izhikevich.org/human_brain_simulation/Blue_Brain.htm
Количественные статистические данные по соединениям нейронов и слоёв нейронов в коре мозга:
http://www.ncbi.nlm.nih.gov/pubmed/22991468
http://www.jneurosci.org/content/24/39/8441
Монография про нервную систему C.Elegans с подробным описанием, анализом соединений и попытками связать их с паттернами поведения:
http://homes.mpimf-heidelberg.mpg.de/~mhelmsta/pdf/1986%20White%20Southgate%20Thomson%20Brenner%20PhilTransRoySocB.pdf
Всего внутри нематоды 302 нейрона и ~7000 синапсов, при этом нематода способна к простым формам обучения и показывает разнообразное поведение:
http://learnmem.cshlp.org/content/17/4/191.long
Есть нобелевский лауреат Джеральд Эдельман который занимается крайне интересными исследованиями если смотреть с этой точки зрения: в его лаборатории строятся сложные модели нервных систем и они подвергаются тестированию на простых задачах в реальных условиях и в симуляторах. В этих экспериментах была продемонстрирована пластичность и обучение в искусственной нервной системе, напоминающие те же характеристики у мышей.
Вoт сайты и библиографии по Edelman's Brain Based Devices и роботам Darwin X, XI:
http://www-all.cs.umass.edu/~barto/Brain-Based%20Devices.pdf
http://neurosciencesinstitute.weebly.com/selected-publications.html
http://www.nsi.edu/~nomad/
Наконец, недавний результат из той же лаборатории где продемонстрировано обучение искусственой нервной систмы последовательнастям движений (применена модель Ижикевича, short term synaptic plasticity, STDP и двухуровневая архитектура со специальной организацией возбуждающих и тормозящих нейронов которая заставляет паттерны возбуждения конкурировать между собой)
http://www.frontiersin.org/Neurorobotics/10.3389/fnbot.2013.00010/abstract

Вывод: у инженерного подхода к созданию ЦНС (с опорой на биологические принципы) есть настоящее и будущее.

#WEMOSG (23+4) / @engineer / 4058 дней назад
ipv6 ready BnW для ведрофона BnW на Реформале Викивач Котятки

Цоперайт © 2010-2016 @stiletto.