Принимаем за аксиому, что государство — враг каждого, кто не враг себе. Враг ли государство самому себе?
Алсо, в связи с темой выборов вспомнил. Когда я ехал домой с систы, видел из окна автобуса предвыборный рекламный щит какой-то тётки, на котором написано "никаких лозунгов, только дела". Однако эта фраза сама является лозунгом, полностью удовлетворяющим словарному определению лозунга "призыв или обращение в лаконичной форме, выражающее руководящую идею, требование". Таким образом, мы имеем дело с частным случаем парадокса лжеца: лозунг, размещённый на предвыборном агитационном материале, противоречит сам себе. Противоречия можно избежать только если принять, что этот лозунг как высказывание ложен. Но кто будет избирать такого кандидата, который совершенно определённо лжёт уже на стадии предвыборной агитации? Или рассчитано на то, что избиратели не могут в логику? Впрочем, в условиях рашкосистемы у избирателей, по большому счёту, никто ничего особо и не спрашивает, а побеждает всегда номенклатура, так что с практической точки зрения, пожалуй, всё равно, что писать на агитках. Можно просто написать "знакомьтесь, вот это ваш новый депутат, а вот этот чувак — чисто для фона, чтобы была иллюзия демократии".
http://verola.livejournal.com/145010.html
Разберём логическую задачу. Отряд девочек ходил в поход. По возвращении родители узнали, что кто-то ходил купаться ночью без разрешения, и в каждой семье решили высечь дочь, если она участвовала в этом. Каждая девчонка правдиво рассказывает родителям, про всех провинившихся, но молчит о своём участии, если оно было. Каждый день в школе девчонки узнают, кого накануне высекли, и расказывают вечером об этом дома. Родители информацией не обмениваются, но логически мыслят идеально. Ровно через неделю несколько отцов уверились в провинности своих дочерей и наказали их. Сколько девчонок было в этот вечер высечено?
По-моему, в текущем виде эта задача не решаема. Нужно ещё хотя бы одно условие, например что купались все или что только те, кто купались, знали кто купался и говорили об этом родителям. Тогда это будет вариант классической задачи о зелёных глазах: http://www.youtube.com/watch?v=98TQv5IAtY8 А в текущей форме хз как решать.
http://a-shen.livejournal.com/87797.html#comments
из учебника для 3 класса (Л.Г.Петерсон, Ювента 2014):
задача 8в на с.8: "придумай несколько примеров пустого множества"
6б на той же странице "запиши все множества, равные {а;б;в}"
Анализ теорем арифметики показывает, что в математике употребляются различные варианты отрицания. Нас далее будут интересовать два таких варианта, различие между которыми особенно наглядно проявляется при рассмотрении отрицания всеобщности некоторого суждения.
Обозначим, например, через F некоторое свойство натуральных чисел и рассмотрим следующее высказывание: ..неверно, что всякое число обладает свойством F". Доказательство такого высказывания может быть двояким. С одной стороны, можно под его доказательством понимать приведение к противоречию предположения о том, что всякое число обладает свойством F. С другой стороны, под этим доказательством можно понимать построение некоторого примера, опровергающего, что всякое натуральное число обладает свойством F, т . е. указание такого натурального числа, для которого свойство F не имеет места.
Классическая постановка вопроса не отдает предпочтения доказательству существования опровергающей конструкции перед доказательством путем приведения к противоречию. С конструктивной же точки зрения эти два доказательства равноценными не являются. Построение опровергающей конструкции доказывает, очевидно, более сильное утверждение и содержит больше информации.
Это дало основание Нельсону [1] построить логическое исчисление, в котором употребляется вторая форма отрицания, основанная на построении опровергающей конструкции.
Как было показано А. А. Марковым [2] , из правил истолкования с конструктивной точки зрения основных логических связей вытекает, что опровержение путем приведения к противоречию можно в известном смысле выразить через опровержение путем построения опровергающей конструкции.
Тем не менее ограничиваться только второй концепцией отрицания нецелесообразно. Приведение к противоречию является весьма употребительным в математике приемом доказательства , так что в тех моделях
математического мышления, какими являются различные логические исчисления, свойства соответствующего отрицания должны быть отражены. В обычной конструктивной арифметике (а потому и в обычном конструктивном исчислении высказываний) именно эта форма отрицания и применяется.
Л о г и к (Старому господину). Вот вам пример силлогизма. У кошки четыре лапы. У Фрико и Исидора у каждого по четыре лапы. Следовательно, Фрико и Исидор — кошки.
С т а р ы й г о с п о д и н (Логику). У моей собаки тоже четыре лапы.
Л о г и к (Старому господину). Следовательно, это кошка.
С т а р ы й г о с п о д и н (после долгого размышления). Значит, логически выходит, моя собака — кошка.
…
Л о г и к (Старому господину). А вот вам еще силлогизм. Все кошки смертны. Сократ смертен. Следовательно, Сократ — кошка.
С т а р ы й г о с п о д и н. И у него четыре лапы. А ведь верно, моего кота как раз и зовут Сократ.
Л о г и к. Вот видите...
С т а р ы й г о с п о д и н (Логику). Значит, Сократ был кошкой!
Л о г и к (Старому господину). Так нам сейчас доказала логика.
http://www.lib-drama.narod.ru/ionesco/nosorog.html
Приснилось, что я придумал троичную логику. В этой логике есть три значения: 0 — ложь, ничто, никогда; 1 — может быть, иногда, в некоторых случаях, неизвестно; и 2 — истина, всё, всегда, во всех случаях. Также есть два логических действия: умножение (И) — a*b=min(a,b); и сложение (ИЛИ) — a+b=max(a,b). Во сне я это придумал для того, чтобы избавиться от модусов и кванторов, не помню зачем мне это было надо. Сейчас на свежую голову думаю, что удобнее было бы обозначить значения -1, 0 и 1 — тогда бы ещё и отрицание было бы легко определить как not(a):=-a. А вообще модель достаточно удобная, как мне кажется.
Интересно, люди, которые заходят в блоги, на форумы или в комменты под видео на ютубе только для того, чтобы написать "мне всё равно/не интересно/всем похуй" в самом деле не понимают, что сами себе противоречат? Ведь если в самом деле "похуй", нет никакой причины писать коммент, да и в принципе нет смысла писать коммент, который несёт ровно такую же информацию, что и отсутствие коммента — затраты энергии больше, а эффект тот же. Это какой-то концептуальный акт что ли — писать "мне похуй", типа как себе яйца прибить к брусчатке на красной площади? Или люди, которые пишут такие комменты, всерьёз ждут на них какой-то реакции? Какой, интересно? "А почему тебе похуй? Тебе не должно быть похуй, это же такая важная проблема, а ну срочно обращай на неё внимание, и чтоб завтра же тебе не было похуй!" — что-то типа этого что ли?